Thursday, August 21, 2014

Auto-Regulator chapter one: Breakdown.




 I suppose the first entry for this particular series should be about milling up the lumber. There are many, many instances where boards continue around corners, or where the grain continues from the movement case, past the waist of the case, and down the sides of the pedestal. There are so many individual parts to the case, that I didn't want to run the risk of having too many subtle differences in color, or texture, especially around the mitered corners. So, I cut every piece from a couple of huge beams of 12/4 walnut. Well, I tried to, anyway. In the end, I'd cut the front arch 3 separate times before I understood what was going on in the miter joint, so that's actually from a different piece of walnut.


 One of the many grain patterns that I ended up putting to use was to book match the wood around the edges of the front pillars. The pillars started out pretty thick... roughly 3" square in cross section... because they needed to be thick enough to allow for the wide sections at the end, where the miters are cut. At that point, the material is about 2 3/4" from edge to the widest point in the miter. But the blank is also square in cross section to allow for the sculpting that happened on the inside. (Click on the top photo, and take a better look at the contours on the inside of the case)

The diagonal grain near the top was a fluke. That's just what I happened to get when I opened up the beam... the grain went from being in-line with the board to 30-something degrees on angle from the face.

In the end, the pillars are a 3-part lamination: There's a 2 1/4" square core, which is destined to be sculpted down on the inside, faced on the outside with 3/4" thick pieces that are seamlessly mitered around that front edge. Those face pieces continue down into the pedestal, but the grain's pretty straight, so it's not so obvious at that point. And, the pedestal's not an open structure, so the solid core isn't there. (There's no need to sculpt anything, and we needed room for the clock's power supply, anyway.)

The pedestal parts aren't solid... they're all 3/4" thick pieces that are mitered into panels, and those panels are, in turn, mitered on the edges into a box. But, adjacent pieces along the edge from side to top were contiguous in the original stock, so that had to be taken into account.

Put simply, there was a lot to keep track of when I was breaking down the 12/4 stock... what pieces were book matched, or continuous, and with what. I went through (and broke) many crayons in the process, making notes on all pieces to indicate what went with what. Front pieces for the pedestal, orientation to keep grain continuity with the movement case pillars, or to keep continuity with the upper faces of the pedestal... Not exactly a Rubik's cube, but it felt a little like that sometimes.

-----
Note on the photos: All of the pictures of the finished piece were taken by David Schonbrun.







The Auto-Regulator


From January to July I worked ridiculously hard to develop this case prototype, and the associated process, to house the clock known as the Auto-Regulator. The creator of this particular clock has designed it to be the first atomic clock for home or office, so it's kind of a big deal.

This project was a monster on many fronts. There were many jigs to work out, many issues I hadn't foreseen, many, many late nights, and a lot going on at home, to boot. I haven't blogged since April because, quite plainly, I was fried, and had no time.

That's been getting better, so I'm back. In coming weeks/ months I'll go through the project from start to finish, and explain how it all came together, and how it's led me to where I am now.